Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
3.
Clin Microbiol Infect ; 28(2): 222-238, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1525742

ABSTRACT

SCOPE: In January 2021, the ESCMID Executive Committee decided to launch a new initiative to develop ESCMID guidelines on several COVID-19-related issues, including treatment of COVID-19. METHODS: An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A long list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search with a third panellist involved in case of inconsistent results. Voting was based on the GRADE approach. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS: A synthesis of the available evidence and recommendations is provided for each of the 15 PICOs, which cover use of hydroxychloroquine, bamlanivimab alone or in combination with etesevimab, casirivimab combined with imdevimab, ivermectin, azithromycin and empirical antibiotics, colchicine, corticosteroids, convalescent plasma, favipiravir, remdesivir, tocilizumab and interferon ß-1a, as well as the utility of antifungal prophylaxis and enoxaparin. In general, the panel recommended against the use of hydroxychloroquine, ivermectin, azithromycin, colchicine and interferon ß-1a. Conditional recommendations were given for the use of monoclonal antibodies in high-risk outpatients with mild-moderate COVID-19, and remdesivir. There was insufficient evidence to make a recommendation for use of favipiravir and antifungal prophylaxis, and it was recommended that antibiotics should not be routinely prescribed in patients with COVID-19 unless bacterial coinfection or secondary infection is suspected or confirmed. Tocilizumab and corticosteroids were recommended for treatment of severe COVID-19 but not in outpatients with non-severe COVID-19. SCOPE: The aim of the present guidance is to provide evidence-based recommendations for management of adults with coronavirus disease 2019 (COVID-19). More specifically, the goal is to aid clinicians managing patients with COVID-19 at various levels of severity including outpatients, hospitalized patients, and those admitted to intensive care unit. Considering the composition of the panel, mostly clinical microbiologists or infectious disease specialists with no pulmonology or intensive care background, we focus only on pharmacological treatment and do not give recommendations on oxygen supplement/support. Similarly, as no paediatricians were included in the panel; the recommendations are only for adult patients with COVID-19. Considering the current literature, no guidance was given for special populations such as the immunocompromised.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive , Practice Guidelines as Topic , SARS-CoV-2 , COVID-19 Serotherapy
4.
Animals (Basel) ; 11(7)2021 Jul 02.
Article in English | MEDLINE | ID: covidwho-1295738

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the zoonotic causative agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic situation with millions of infected humans worldwide. Among domestic animals, there have been limited studies regarding the transmissibility and exposure to the infection in natural conditions. Some animals are exposed and/or susceptible to SARS-CoV-2 infection, such as cats, ferrets and dogs. By contrast, there is no information about the susceptibility of ruminants to SARS-CoV-2. This study tested the antibody response in 90 ovine pre-pandemic serum samples and 336 sheep serum samples from the pandemic period (June 2020 to March 2021). In both cases, the animals were in close contact with a veterinary student community composed of more than 700 members. None of the serum samples analyzed was seroreactive based on an enzyme-linked immunosorbent assay (ELISA) using the receptor-binding domain (RBD) of the spike antigen. In this sense, no statistical difference was observed compared to the pre-pandemic sheep. Our results suggest that it seems unlikely that sheep could play a relevant role in the epidemiology of SARS-CoV-2 infection. This is the first study to report the absence of evidence of sheep exposure to SARS-CoV-2 in natural conditions.

5.
Biology (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1125483

ABSTRACT

Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.

6.
Transbound Emerg Dis ; 69(3): 1056-1064, 2022 May.
Article in English | MEDLINE | ID: covidwho-1122155

ABSTRACT

A new coronavirus known as SARS-CoV-2 emerged in Wuhan in 2019 and spread rapidly to the rest of the world causing the pandemic disease named coronavirus disease of 2019 (COVID-19). Little information is known about the impact this virus can cause upon domestic and stray animals. The potential impact of SARS-CoV-2 has become of great interest in cats due to transmission among domestic cats and the severe phenotypes described recently in a domestic cat. In this context, there is a public health warning that needs to be investigated in relation with the epidemiological role of this virus in stray cats. Consequently, in order to know the impact of the possible transmission chain, blood samples were obtained from 114 stray cats in the city of Zaragoza (Spain) and tested for SARS-CoV-2 and other selected pathogens susceptible to immunosuppression including Toxoplasma gondii, Leishmania infantum, feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) from January to October 2020. Four cats (3.51%), based on enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike antigen, were seroreactive to SARS-CoV-2. T. gondii, L. infantum, FeLV and FIV seroprevalence was 12.28%, 16.67%, 4.39% and 19.30%, respectively. Among seropositive cats to SARS-CoV-2, three cats were also seropositive to other pathogens including antibodies detected against T. gondii and FIV (n = 1); T. gondii (n = 1); and FIV and L. infantum (n = 1). The subjects giving positive for SARS-CoV-2 were captured in urban areas of the city in different months: January 2020 (2/4), February 2020 (1/4) and July 2020 (1/4). This study revealed, for the first time, the exposure of stray cats to SARS-CoV-2 in Spain and the existence of concomitant infections with other pathogens including T. gondii, L. infantum and FIV, suggesting that immunosuppressed animals might be especially susceptible to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cat Diseases , Coinfection , Immunodeficiency Virus, Feline , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Coinfection/epidemiology , Coinfection/veterinary , Humans , Leukemia Virus, Feline , SARS-CoV-2 , Seroepidemiologic Studies , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL